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Digital electronics Notes 

Introducation  

Digital electronics are systems that represent signals as discrete levels, rather than as a 

continuous range. In most cases the number of states is two, and these states are represented 

by two voltage levels: one near to zero volts and one at a higher level depending on the supply 

voltage in use. These two levels are often represented as "Low" and "High". 

The fundamental advantage of digital techniques stem from the fact it is easier to get an 

electronic device to switch into one of a number of known states than to accurately reproduce a 

continuous range of values. 

Digital electronics are usually made from large assemblies of logic gates, simple electronic 

representations of Boolean logic functions. This chapter is an introduction to Digital Logic 

circutes. 

Logic gate 

A logic gate performs a logical operation on one or more logic inputs and produces a single logic 

output. Because the output is also a logic-level value, an output of one logic gate can connect 

to the input of one or more other logic gates. The logic normally performed is Boolean logic and 

is most commonly found in digital circuits. Logic gates are primarily implemented electronically 

using diodes or transistors, but can also be constructed using electromagnetic relays, fluidics, 

optics, molecules, or even mechanical elements. 

In electronic logic, a logic level is represented by a voltage or current, (which depends on the 

type of electronic logic in use). Each logic gate requires power so that it can source and sink 

currents to achieve the correct output voltage. In logic circuit diagrams the power is not shown, 

but in a full electronic schematic, power connections are required.  

Binary information is represented in digital computer by physical quantities called signals. 

Electrical signal such as voltages exist throughout the computer in either one of two 

recognizable states. The two states represent a binary variable that can be equal to 1 or 0. 

Binary logic deal with binary variables and with operations that assume a logical meaning. It is 

used to describe, in algebric or tabular form, the manipulation and processing of binary 

information. The manipulation of bianary information is done by logic circuits called gates. Gates 

are blocks of hardware that produce signal of binary 1 or 0 when input logic requirements are 

satisfied. 

 Logic gates process signals which represent true or false. Normally the positive supply 

voltage +Vs represents true and 0V represents false. Other terms which are used for the true 

and false states are shown in the table: 
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Logic states 

TRUE FALSE 

0 1 

HIGH LOW 

+Vs 0V 

On Off 

 

 

Type Of Gates: 

 NOT Gates 

 AND Gates 

 OR Gates 

 NAND Gate 

 NOR Gate 

 

NOT Gates: 

In digital logic, an inverter or NOT gate is a logic gate which implements logical negation.The 

NOT gate is an electronic circuit that produces an inverted version of the input at its output. It 

is also known as an inverter. If the input variable is A, the inverted output is known as NOT A. 

This is also shown as A', or A with a bar over the top, as shown at the outputs. The diagrams 

below show two ways that the NAND logic gate can be configured to produce a NOT gate. It can 

also be done using NOR logic gates in the same way. 

   There are symbol for AND gates:  

              

 

 

 

 

Truth Table: 

 

Input Output 

A A' 

0 1 

1 0 

 

AND Gates: 

The AND gate is a digital logic gate that implements logical conjunction - it behaves according 

to the truth table to the right. A HIGH output (1) results only if both the inputs to the AND 
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gate are HIGH (1). If neither or only one input to the AND gate is HIGH, a LOW output results. 

In another sense, the function of AND effectively finds the minimum between two binary digits, 

just as the OR function finds the maximum. 

There are symbol for AND gates:  

 

 

 

The AND gate with inputs A and B and output C implements the logical expression  

C=A.B 

Truth Table: 

 

 

 

Input Output 

A B C=A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

OR Gates: 

The OR gate is a digital logic gate that implements logical disjunction - it behaves according to 

the truth table to the right. A HIGH output (1) results if one or both the inputs to the gate are 

HIGH (1). If neither input is HIGH, a LOW output (0) results. In another sense, the function of 

OR effectively finds the maximum between two binary digits, just as the complementary AND 

function finds the minimum. 

There are symbol for OR gates:  

 

 

 

The OR gate with inputs A and B and output C implements the logical expression  

C=A+B 

Truth Table: 
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Input Output 

A B C=A+B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

NAND gates (NAND = Not AND) 

 The NAND gate is a digital logic gate that behaves in a manner that corresponds to the 

truth table to the left. A LOW output results only if both the inputs to the gate are HIGH. If 

one or both inputs are LOW, a HIGH output results. The NAND gate is a universal gate in the 

sense that any boolean function can be implemented by NAND gates. 

 Digital systems employing certain logic circuits take advantage of NAND's functional 

 completeness. In complicated logical expressions, normally written in terms of other logic 

functions such as AND, OR, and NOT, writing these in terms of NAND saves on cost, because 

implementing such circuits using NAND gate yields a more compact result than the alternatives. 

 NAND gates can also be made with more than two inputs, yielding an output of LOW if all 

of the inputs are HIGH, and an output of HIGH if any of the inputs is LOW. These kinds of 

gates therefore operate as n-ary operators instead of a simple binary operator. Algebraically, 

these can be expressed as the function NAND(a,b,......n), which is logically equivalent to NOT(a 

AND b AND ... AND n). 

There are symbol for NAND gates:  

 

 

 

Truth Table: 

 

 

 

Input Output 

A B C=A NAND B 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

 



Sri Satya Sai University of Technology & Medical Sciences 

 

NOR gates (NOR = Not OR): 

 The NOR gate is a digital logic gate that implements logical NOR - it behaves according 

to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW 

(0). If one or both input is HIGH (1), a LOW output (0) results. NOR is the result of the 

negation of the OR operator. NOR is a functionally complete operation—combinations of NOR 

gates can be combined to generate any other logical function. By contrast, the OR operator is 

monotonic as it can only change LOW to HIGH but not vice versa. 

 In most, but not all, circuit implementations, the negation comes for free—including 

CMOS and TTL. In such logic families, the only way to implement OR is with 2 or more gates, 

such as a NOR followed by an inverter. A significant exception is some forms of the domino logic 

family. 

There are symbol for NOR gates:  

 

 

 

Truth Table: 

 

Input Output 

A B C=A NOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

  

 The NAND and NOR gates are called universal functions since with either one the AND 

and OR functions and NOT can be generated. 

 

 

XOR gates (Exclusive OR) 

 The XOR gate (sometimes EOR gate) is a digital logic gate that implements exclusive 

disjunction - it behaves according to the truth table above. A HIGH output (1) results if one, 

and only one, of the inputs to the gate is HIGH (1). If both inputs are LOW (0) or both are 

HIGH (1), a LOW output (0) results. 

 XOR gate is short for exclusive OR. This means that precisely one input must be 1 (true) 

for the output to be 1 (true). A way to remember XOR is "one or the other but not both." 

 This function is addition modulo 2. As a result, XOR gates are used to implement binary 

addition in computers. A half adder consists of an XOR gate and an AND gate. 

There are symbol for XOR gates:  

 



Sri Satya Sai University of Technology & Medical Sciences 

 

 

 

 

The XOR gate with inputs A and B implements the logical expression A.B`+A`.B . 

Truth Table: 

Input Output 

A B C=A XOR B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

XNOR gates (Exclusive NOR) 

 The XNOR gate (sometimes spelled "exnor" or "enor") is a digital logic gate whose 

function is the inverse of the exclusive OR (XOR) gate. The two-input version implements 

logical equality, behaving according to the truth table to the right. A HIGH output (1) results if 

both of the inputs to the gate are the same. If one but not both inputs are HIGH (1), a LOW 

output (0) results. 

There are symbol for XNOR gates:  

 

 

 

Truth Table: 

 

Input Output 

A B C=A XOR B 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

 

http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Logical_equality
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 Logic gates can be combined to produce more complex functions. They can also be 

combined to substitute one type of gate for another.  

 For example to produce an output Q which is true only when 

input A is true and input B is false, as shown in the truth table on 

the right, we can combine a NOT gate and an AND gate like this:  

  

Q = A AND NOT B  

Input A Input B Output Q 

0 0 0 

0 1 0 

1 0 1 

1 1 0 
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 Working out the function of a combination of gates 

Truth tables can be used to work out the function of a combination of gates.  

For example the truth table on the right show the intermediate outputs 

D and E as well as the final output Q for the system shown below.  

  

 

 

 

 

D = NOT (A OR B) 

E = B AND C 

Q = D OR E = (NOT (A OR B)) OR (B AND C)  

 Boolean Algebra 

 Boolean algebra was developed in the 1800's by James Bool, an Irish mathematician. It 

was found to be extremely useful for designing digital circuits, and it is still heavily used by 

electrical engineers and computer scientists. The techniques can model a logical system with a 

single equation. The equation can then be simplified and/or manipulated into new forms. The 

same techniques developed for circuit designers adapt very well to ladder logic programming. 

 Boolean algebra is an algebra for the manipulation of objects that can take on 

 only two values, typically true and false, although it can be any pair of values. 

 Because computers are built as collections of switches that are either “on” or 

 “off,” Boolean algebra is a very natural way to represent digital information. In 

 reality, digital circuits use low and high voltages, but for our level of understanding, 0 and 1 will 

suffice. It is common to interpret the digital value 0 as false and 

 the digital value 1 as true. 

 

 Boolean equations consist of variables and operations and look very similar to normal 

algebraic equations. The three basic operators are AND, OR and NOT; more complex operators 

include exclusive or (EOR), not and (NAND), not or (NOR). Truth tables are a simple (but bulky) 

method for showing all of the possible combinations that will turn an output on or off. 

Fundamental laws 

We imagine a logical variable, A, that takes on the values 0 or 1. If A = 0 then A = 1 and if  A = 

1 then A = 0 . Here are some obvious identities using the AND, OR and NOT operations.  

Looking at these identities you can see why the ‘plus’ symbol was chosen for OR and ‘times’  

Inputs Outputs 

A B C D E Q 

0 0 0 1 0 1 

0 0 1 1 0 1 

0 1 0 0 0 0 

0 1 1 0 1 1 

1 0 0 0 0 0 

1 0 1 0 0 0 

1 1 0 0 0 0 

1 1 1 0 1 1 
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was chosen for AND. 

   OR 

A+0= A 

A +1 = 1 

A+ A= A 

A + A =1 

 AND 

A• 0 = 0 

A•1 = A 

A• A = A 

A• A = 0 

  NOT 

A + A =1 

A• A = 0 

 A=A 

Two Boolean expressions are equal if and only if their truth tables are identical. 

 The Basic Axioms of Boolean Algebra        

 

 DeMorgan's Theorems 

 A mathematician named DeMorgan developed a pair of important rules regarding group 

complementation in Boolean algebra. By group complementation, I'm referring to the 

complement of a group of terms, represented by a long bar over more than one variable.  

 You should recall from the chapter on logic gates that inverting all inputs to a gate 
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reverses that gate's essential function from AND to OR, or visa-versa, and also inverts the 

output. So, an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a 

NAND gate, and an AND gate with all inputs inverted (a Negative-AND gate) behaves the same 

as a NOR gate. DeMorgan's theorems state the same equivalence in "backward" form: that 

inverting the output of any gate results in the same function as the opposite type of gate (AND 

vs. OR) with inverted inputs:  

 

 

 

 

 

 

 

 

 

 

 

 

A long bar extending over the term AB acts as a grouping symbol, and as such is entirely 

different from the product of A and B independently inverted. In other words, (AB)' is not equal 

to A'B'. Because the "prime" symbol (') cannot be stretched over two variables like a bar can, 

we are forced to use parentheses to make it apply to the whole term AB in the previous 

sentence. A bar, however, acts as its own grouping symbol when stretched over more than one 

variable. This has profound impact on how Boolean expressions are evaluated and reduced, as we 

shall see.  

DeMorgan's theorem may be thought of in terms of breaking a long bar symbol. When a long bar 

is broken, the operation directly underneath the break changes from addition to multiplication, 

or visa-versa, and the broken bar pieces remain over the individual variables. To illustrate:  
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Example of Proof 

Each of the above equalities is a theorem that can be proved. Let’s do an example by directly 

comparing the truth tables for the left and right sides. We take on DeMorgan’s first theorem for  

two variables, A and B. 

Truth Table: 

(A.B)' 

A B A.B (A.B)' 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 1 0 

(A'+B') 

A B A' B' A'+B' 

0 0 1 1 1 

0 1 1 0 1 

1 0 0 1 1 

1 1 0 0 0 

  

The last columns of the truth tables are identical. Thus, the first theorem is proven for two 

 variables. 

 

 Simplification of Boolean Expressions 

The algebraic identities we studied in algebra class allow us to reduce algebraic 

 expressions (such as 10x + 2y - x + 3y) to their simplest forms (9x + 5y). The 

 Boolean identities can be used to simplify Boolean expressions in a similar fashion. We apply 

these identities in the following examples. 

EXAMPLE:  

Suppose we have the function F(x,y) = xy + xy. Using the OR form of the Idempotent Law and 

treating the expression xy as a Boolean variable, 

We simplify the original expression to xy. Therefore, F(x,y) = xy + xy = xy. 

 Karnaugh map 

A Karnaugh map (K-map) is a pictorial method used to minimize Boolean expressions without 

having to use Boolean algebra theorems and equation manipulations. A K-map can be thought of 

as a special version of a truth table . 
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Using a K-map, expressions with two to four variables are easily minimized. Expressions with 

five to six variables are more difficult but achievable, and expressions with seven or more 

variables are extremely difficult (if not impossible) to minimize using a K-map. 

Why learn about Karnaugh maps? The Karnaugh map, like Boolean algebra, is a simplification 

tool applicable to digital logic.The Karnaugh Map will simplify logic faster and more easily in 

most cases.  

Boolean simplification is actually faster than the Karnaugh map for a task involving two or fewer 

Boolean variables. It is still quite usable at three variables, but a bit slower. At four input 

variables, Boolean algebra becomes tedious. Karnaugh maps are both faster and easier. 

Karnaugh maps work well for up to six input variables, are usable for up to eight variables. For 

more than six to eight variables, simplification should be by CAD (computer automated design).  

Recommended logic simplification vs number of Inputs 

Variable  Boolean Algebra Karnaugh Map Computer automated 

1--2  X  ? 

3 X X ? 

4 ? X ? 

5--6  X X 

7—8  ? X 

>8   X 

 

In theory any of the three methods will work. However, as a practical matter, the above 

guidelines work well. We would not normally resort to computer automation to simplify a three 

input logic block. We could sooner solve the problem with pencil and paper. However, if we had 

seven of these problems to solve, say for a BCD (Binary Coded Decimal) to seven segment 
decoder, we might want to automate the process. A BCD to seven segment decoder generates 

the logic signals to drive a seven segment LED (light emitting diode) display.  

Examples of computer automated design languages for simplification of logic are PALASM, 

ABEL, CUPL, Verilog, and VHDL. These programs accept a hardware descriptor language input 

file which is based on Boolean equations and produce an output file describing a reduced (or 

simplified) Boolean solution.  

 Making a Venn diagram look like a Karnaugh map 

Starting with circle A in a rectangular A' universe in figure (a) below, we morph a Venn diagram 

into almost a Karnaugh map.  
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We 

expand 

circle 

A at (b) 

and (c), 

confor

m to 

the 

rectang

ular A' 

universe at (d), and change A to a rectangle at (e). Anything left outside of A is A' . We assign a 

rectangle to A' at (f). Also, we do not use shading in Karnaugh maps. What we have so far 

resembles a 1-variable Karnaugh map, but is of little utility. We need multiple variables.  

Figure 

(a) 

above 

is the 

same 

as the 

previou

s Venn 

diagram 

showing A and A' above except that the labels A and A' are above the diagram instead of inside 

the respective regions. Imagine that we have go through a process similar to figures (a-f) to get 

a "square Venn diagram" for B and B' as we show in middle figure (b). We will now superimpose 

the diagrams in Figures (a) and (b) to get the result at (c), just like we have been doing for Venn 

diagrams. The reason we do this is so that we may observe that which may be common to two 

overlapping regions-- say where A overlaps B. The lower right cell in figure (c) corresponds to 

AB where A overlaps B.  

 

 

 

 

 

 

We don't waste time drawing a Karnaugh map like (c) above, sketching a simplified version as 

above left instead. The column of two cells under A' is understood to be associated with A', and 

the heading A is associated with the column of cells under it. The row headed by B' is associated 

with the cells to the right of it. In a similar manner B is associated with the cells to the right of 

it. For the sake of simplicity, we do not delineate the various regions as clearly as with Venn 

diagrams.  
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The Karnaugh map above right is an alternate form used in most texts. The names of the 

variables are listed next to the diagonal line. The A above the diagonal indicates that the 

variable A (and A') is assigned to the columns. The 0 is a substitute for A', and the 1 substitutes 

for A. The B below the diagonal is associated with the rows: 0 for B', and 1 for B  

Example:  

Mark the cell corresponding to the Boolean expression AB in the Karnaugh map above with a 1  

 

 

 

 

 

Solution: 

 Shade or circle the region corresponding to A. Then, shade or enclose the region 

corresponding to B. The overlap of the two regions is AB. Place a 1 in this cell. We do not 

necessarily enclose the A and B regions as at above left.  

We 

develop 

a 3-

variabl

e 

Karnau

gh map 

above, 

starting 

with 

Venn 

diagram 

like 

regions

. The universe (inside the black rectangle) is split into two narrow narrow rectangular regions for 

A' and A. The variables B' and B divide the universe into two square regions. C occupies a 

square region in the middle of the rectangle, with C' split into two vertical rectangles on each 

side of the C square.  

In the final figure, we superimpose all three variables, attempting to clearly label the various 

regions. The regions are less obvious without color printing, more obvious when compared to the 

other three figures. This 3-variable K-Map (Karnaugh map) has 23 = 8 cells, the small squares 

within the map. Each individual cell is uniquely identified by the three Boolean Variables (A, B, 

C). For example, ABC' uniquely selects the lower right most cell(*), A'B'C' selects the upper 

left most cell (x).  
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We 

don't 

normall

y label 

the 

Karnau

gh map 

as 

shown above left. Though this figure clearly shows map coverage by single boolean variables of a 

4-cell region. Karnaugh maps are labeled like the illustration at right. Each cell is still uniquely 

identified by a 3-variable product term, a Boolean AND expression. Take, for example, ABC' 

following the A row across to the right and the BC' column down, both intersecting at the lower 

right cell ABC'. 

See (*) above 

figure.  

 

 

 

 

 

The above two different forms of a 3-variable Karnaugh map are equivalent, and is the final form 

that it takes. The version at right is a bit easier to use, since we do not have to write down so 

many boolean alphabetic headers and complement bars, just 1s and 0s Use the form of map on 

the right and look for the the one at left in some texts. The column headers on the left B'C', 

B'C, BC, BC' are equivalent to 00, 01, 11, 10 on the right. The row headers A, A' are 

equivalent to 0, 1 on the right map.  

 Karnaugh maps, truth tables 

 The Output of the Boolean equation may be computed by the laws of Boolean algebra and 

transfered to the truth table or Karnaugh map.  

 

 

 

 

 

 

 

The outputs of a truth table correspond on a one-to-one basis to Karnaugh map entries. 

Starting at the top of the truth table, the A=0, B=0 inputs produce an output α. Note that this 
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same output α is found in the Karnaugh map at the A=0, B=0 cell address, upper left corner of 

K-map where the A=0 row and B=0 column intersect. The other truth table outputs β, χ, δ 

from inputs AB=01, 10, 11 are found at corresponding K-map locations.  

Below, we show the adjacent 2-cell regions in the 2-variable K-map with the aid of previous 

rectangular Venn diagram like Boolean regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Cells α and χ are adjacent in the K-map as ellipses in the left most K-map below. Referring to 

the previous truth table, this is not the case. There is another truth table entry (β) between 

them. Which brings us to the whole point of the organizing the K-map into a square array, cells 

with any Boolean variables in common need to be close to one another so as to present a pattern 

that jumps out at us. For cells α and χ they have the Boolean variable B' in common. We 

know this because B=0 (same as B') for the column above cells α and χ. Compare this to the 

square Venn diagram above the K-map.  

A similar line of reasoning shows that β and δ have Boolean B (B=1) in common. Then, α and 

β have Boolean A' (A=0) in common. Finally, χ and δ have Boolean A (A=1) in common. 

Compare the last two maps to the middle square Venn diagram.  

To summarize, we are looking for commonality of Boolean variables among cells. The Karnaugh 

map is organized so that we may see that commonality. Let's try some examples.  

 

 

 

 

 

 



Sri Satya Sai University of Technology & Medical Sciences 

 

 

Example:  

Transfer the contents of the truth table to the Karnaugh map above.  

 

 

 

 

 

 

 

 

Solution:  

 

The truth table contains two 1s. the K- map must have both of them. locate the first 1 in the 

2nd row of the truth table above.  

 note the truth table AB address  

 locate the cell in the K-map having the same address  

 place a 1 in that cell  

Repeat the process for the 1 in the last line of the truth table.  

Example:  

For the Karnaugh map in the above problem, write the Boolean expression. Solution is below.  

 

 

 

 

 

 

 

 

Solution:  

 

Look for adjacent cells, that is, above or to the side of a cell. Diagonal cells are not adjacent. 

Adjacent cells will have one or more Boolean variables in common.  

 Group (circle) the two 1s in the column  
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 Find the variable(s) top and/or side which are the same for the group, Write this as the 

Boolean result. It is B in our case.  

 Ignore variable(s) which are not the same for a cell group. In our case A varies, is both 1 

and 0, ignore Boolean A.  

 Ignore any variable not associated with cells containing 1s. B' has no ones under it. 

Ignore B'  

 Result Out = B  

This might be easier to see by comparing to the Venn diagrams to the right, specifically the B 

column.  

Example:  

For the Truth table below, transfer the outputs to the Karnaugh, then write the Boolean 

expression for the result.  

 

 

 

 

 

 

Solution:  

 

Transfer the 1s from the locations in the Truth table to the corresponding locations in the K-

map.  

 Group (circle) the two 1's in the column under B=1  

 Group (circle) the two 1's in the row right of A=1  

 Write product term for first group = B  

 Write product term for second group = A  

 Write Sum-Of-Products of above two terms Output = A+B  

The solution of the K-map in the middle is the simplest or lowest cost solution. A less desirable 

solution is at far right. After grouping the two 1s, we make the mistake of forming a group of 1-

cell. The reason that this is not desirable is that:  

 The single cell has a product term of AB'  

 The corresponding solution is Output = AB' + B  

 This is not the simplest solution  

The way to pick up this single 1 is to form a group of two with the 1 to the right of it as shown in 

the lower line of the middle K-map, even though this 1 has already been included in the column 

group (B). We are allowed to re-use cells in order to form larger groups. In fact, it is desirable 

because it leads to a simpler result.  

We need to point out that either of the above solutions, Output or Wrong Output, are logically 
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correct. Both circuits yield the same output. It is a matter of the former circuit being the lowest 

cost solution.  

Example:  

 

Simplify the logic diagram below.  

 

 

 

 

 

 

 

Solution: (Figure below)  

 Write the Boolean expression for the original logic diagram as shown below  

 Transfer the product terms to the Karnaugh map  

 Form groups of cells as in previous examples  

 Write Boolean expression for groups as in previous examples  

 Draw simplified logic diagram  

 

 

 

 

 

 

 

 

 

 Logic simplification with Karnaugh maps 


